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Abstract

The paper considers the efficient estimation of opinion pools in the Bayesian paradigm and

extends their application to cases where the number of competing models exceeds the number

of observations. An appropriate Bayesian formulation and estimation algorithm is proposed,

allowing for shrinkage of weights towards any possible combination and thus applicable to

problems related to model averaging and model selection. Results from a simulation study

reveal that the proposed Bayesian opinion pool methodology improves prediction accuracy

and stability in weights compared to opinion pools estimated using scoring rules. An applica-

tion involving the Survey of Professional Forecasters demonstrates that the Bayesian opinion

pool’s inflation forecast competes well with the inflation forecast obtained from the simple

opinion pool (published by the Federal Bank of Philadelphia). The application showcases the

usefulness of the Bayesian solution in situations where optimization-based opinion pools fail.
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1 Introduction and Motivation

Every forecaster’s take on a problem is reflected in how they formulate, specify and estimate a pre-

dictive model. All these decisions are predicated on how the forecaster perceives and incorporates

uncertainty (Steel (2020)). As a result, several competing predictive models can emerge for a given

random variable. For a researcher, an intuitive way to utilize all this information is by aggregating

all the predictive densities (See Hoeting et al. (1999) for Bayesian Model averaging, Wang et al.

(2009) for frequentist model averaging, Moral-Benito (2015) for model averaging in economics,

Gneiting and Ranjan (2013) for predictive model aggregation and Clyde and George (2004) for

model uncertainty). This paper focuses on linear opinion pool (Stone (1961), Bacharach (1974)),

a simple and widely used method for model aggregation, and explores its utility for time series

forecasting applications under the Bayesian foundation.

To set up the framework, let yt be a random variable and YT = {y1, y2, . . . , yT} be a sequence

of ordered random variables up to time T . Let Mk be the model estimated by forecaster k and

p(yT+1|YT ,Mk) be the predictive density of yT+1 associated with Mk, where k = 1, 2, . . . , K. The

aggregate predictive density, p(yT+1|YT ), under the linear opinion pool framework is obtained as

p(yT+1|YT ) =
K∑
k=1

wk,Tp(yT+1|YT ,Mk), (1.1)

where wk,T is the weight allotted to Mk with the time subscript implying the use of information up

to time T . It also means that the weights are updated recursively once yt+1 is realized. The weights

are estimated with respect to the constraints
∑K

k=1wk = 1 and wk ≥ 0 ∀ k = 1, 2, . . . , K, which

ensures that Eq. 1.1 is an appropriate probability density.

Researchers have estimated Eq. 1.1 by optimising different objective functions (further referred

to as traditional opinion pools or TOP). There are two issues with the approach. First, estimating

unique weights is infeasible if the number of predictive models exceeds the number of observations

(micronumerosity). A non-negative degree of freedom is a necessary condition for any optimiza-

tion problem. Often, micronumerosity (or near micronumerosity) becomes a binding constraint,
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especially in time series forecasting, where the frequency of observations limits the data length.

This restricts the researcher from considering fewer models in the final analysis or using a shorter

rolling window for training the opinion pools. Second, the weights under TOP have a high vari-

ance when the sample size is small. Since weights based on past information are used to obtain

the predictive density concerning the future variable, instability in these weights over time means

that the opinion pools are responding to noise in the data. In these cases, weights associated with

the expert’s prediction react to their immediate past forecasting accuracy and do not consider their

consistency as the data is limited. This could be one of the reasons why equal weights perform

competitively with optimized weights (Hendry and Clements (2004) and Wallis (2005)), as equal

weights provide insurance against bad forecasts and optimized weights can overfit the data.

The paper proposes to estimate the opinion pools using the proper Bayesian formulation and

hence calls it the Bayesian Opinion Pool (BOP). This approach resolves the two issues discussed.

First, the Bayesian framework allows the opinion pool to be estimated when the number of fore-

casting densities exceeds the number of observations. The proposed algorithm is effective even

when dealing with a high number of forecasters since the whole vector of weights is sampled in

a single block, leading to computational efficiency. Second, the BOP’s weights are less volatile

under the small sample setting. The BOP utilizes the Dirichlet prior which allows the opinion

pool’s weight to shrink towards any possible combination including one extreme of allotting equal

weights to all the models to another where all the weights are allotted to the best model. This

makes BOP useful for applications related to both model averaging and model selection. Due to

the flexibility, the prior can introduce stability in the weights under the small sample settings, by

shrinking them towards equal weights and allowing deviations only if enough evidence is available

in the data. The stability in the weights over time leads to improvement in prediction accuracy

since the shrinkage avoids overfitting. The simulation study (Section 4) found evidence that the

BOP is stable under a small sample setting and is highly competitive with the TOP (the five proper

scoring rules considered are log, quadratic, spherical, continuous ranked probability score (CRPS),

and the first two moments score (FTMS)). Finally, the paper uses BOP in an application involving
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the survey of professional forecasters (SPF) where traditional optimization-based opinion pools

fail due to micronumerosity. The aggregated predictive density for the inflation rate is estimated

and compared with the equal weights strategy published by the Federal Bank of Philadelphia. The

paper finds evidence for lower mean square prediction error associated with inflation estimated

using the BOP.

Even though the current framework uses Bayesian formulation, that does not restrict the experts

from using only Bayesian models. In the Bayesian setting, the predictive density p(yT+1|YT ,Mk)

can be written as

p(yT+1|YT ,Mk) =

∫
p(yT+1|θk, YT ,Mk)p(θk|YT ,Mk)dθk, (1.2)

where θk be the set of parameters used to specify Mk, p(θk|YT ,Mk) is the posterior distribution

of θk and p(yT+1|θk, YT ,Mk) is the likelihood function associated with Mk evaluated at the value

yT+1. The parameter θk has been integrated out, so it does not appear in the Eq. 1.2. In the

likelihood-based perspective, the predictive density can take the form

p(yT+1|YT ,Mk) = p(yT+1|θMLE
k , YT ,Mk). (1.3)

The density is conditioned on θk = θMLE
k , the maximum likelihood estimator, on the right side of

Eq. 1.3, and thus, θk got absorbed into Mk on the left side of Eq. 1.3.

Extensive research has been done involving aggregation of the predictive densities. Mitchell

and Hall (2005) combined density forecasts using Kullback–Leibler information criterion. Billio

et al. (2013) used state space modelling to aggregate predictive densities and used Bayesian formu-

lation to estimate time-varying weights. Busetti (2017) discussed quantile aggregation of predictive

densities. Bassetti et al. (2018) used the Bayesian method to estimate the beta transformation of

the opinion pool. McAlinn and West (2019) develop a novel class of dynamic latent factor models

for time series forecast synthesis called Bayesian predictive synthesis which encompasses several

existing forecast pooling methods.
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For forecasting applications, an appropriate class of objective functions to estimate opinion

pools are scoring rules. A scoring rule is a function that assigns a score to a probabilistic distribu-

tion based on how well it performs in predicting the realized event. Scoring rules can be judged

based on ex-ante and ex-post properties (Winkler et al. (1996)). A scoring rule is called proper

(an ex-ante property) when it disincentivizes the forecaster from revealing the probability distri-

bution different from their true belief. Ex-post properties are concerned with how the scoring rule

evaluates the performance of a probabilistic distribution. Gneiting and Raftery (2007) covered a

thorough discussion on proper scoring rules and their theoretical properties. Bates and Granger

(1969) optimized weights in Eq. 1.1 by minimizing the variance. Geweke and Amisano (2011,

2012) optimized weights using the log score and showed its usefulness in predicting stock index

data. Degroot and Mortera (1991) estimated optimal weights by minimizing the expected quadratic

score under the Bayesian framework. Opschoor et al. (2017) compared opinion pools optimized

from censored likelihood score (CLS), CRPS, and log score on stock market indices data and found

that CLS performed the best, whereas the log score performed the worst. The properties of opinion

pools vary based on the scoring rule used to estimate them.

This paper contributes to the renewed interest in survey-based measures of inflation expecta-

tions. Coibion et al. (2018) referred to SPF extensively and argued for improved models that rely

on variables with expectations. Inflation forecasts are integral to many macroeconomic models as

they are used as an estimator for inflation expectations. For example, the augmented Phillips curve

under aggregate price formation captures the relation where the expectations of future inflation

partly drive the current inflation (Phelps (1967), Friedman (1968)). In business cycle analysis, the

efficacy of a real shock depends on how much future inflation is anticipated (Kydland and Prescott

(1982), Long Jr and Plosser (1983)). Under the rational expectations hypothesis, only unexpected

changes in inflation lead to a change in real macro variables (Muth (1961)). The new Keynesian

theory of price dynamics is based on inflation driven by its own expectations (Ball et al. (1988)).

The Federal Reserve Bank of Philadelphia collects inflation predictive densities from several

forecasters and publishes both at the individual and aggregate levels. They weigh all the predictive
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densities equally to calculate the aggregate level density, thus obtaining the simple opinion pool

(SOP). The issue with that approach is that the equal weights do not extract sufficient information

from the density of the forecasters who have been more accurate than others in the past. Providing

unoptimized weights loses valuable information and leads to an inefficient estimator of predictive

density.

The inflation forecast obtained through the BOP at various levels of shrinkage competes well

with the Federal Reserve Bank of Philadelphia’s published SOP. The average density allotted to

realized inflation is higher, and the mean square prediction error associated with the estimated

expected value is lower for the BOP than the SOP. These issues could have been tackled by us-

ing TOP, but due to the low data frequency, it is infeasible to estimate weights by optimizing an

objective function for any training window possible.

Section 2 gives a brief overview of traditional opinion pools. Section 3 introduces the Bayesian

opinion pool. Section 4 presents the simulation study where the performance of TOP and BOP are

investigated in several settings. Section 5 covers the macroeconomic application involving the SPF

data. Section 6 concludes the paper.

2 Proper Scoring Rules for Traditional Opinion Pools

This section summarizes the asymptotic properties of TOP and how it is used to estimate opinion

pools. For a parametric probability distribution p(YT , θ), let θ0 be the true vector of parameters.

Let any proper scoring rule be presented as S(·). Gneiting and Raftery (2007) showed that asymp-

totically

arg max
θ

1

T

T∑
t=1

S(p(Yt, θ)) −→ θ0 as T −→ ∞. (2.1)

Suppose the constraints on weights in Eq. 1.1 are satisfied. It implies that the opinion pool satisfies

the conditions of an appropriate probability distribution and can be presented as p(YT , wT ), where
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wT = {w1T , w2T , . . . , wKT} be the parameter of interest. Then asymptotically,

arg max
wT

1

T

T∑
t=1

S(p(Yt, wT )) −→ w0 as T −→ ∞. (2.2)

Let M0 be the true model or DGP. Bernardo and Smith (2000) defined three scenarios possible.

First is when M0 is identified and available in the model list (M-close case). In this scenario,

opinion pools will converge to M0. The weight vector w0 = {1, 0, . . . , 0}′ where the weightage of 1

is allotted to M0 and 0 to other models. The second case is when M0 is available, but the researcher

decides to intentionally leave it out of the model set taken into consideration (M-complete case).

The third case, which is the most applicable and is considered in this paper, is when M0 is not part

of the model list (M-open case). In this case, wT will converge to some weight vector w0 = w∗,

which is related to the properties of the metric implied by the scoring function.

Elliott et al. (2016) argued that there is no natural choice for choosing the scoring rule under

the M-open case. Thus, the paper considers the log (L), quadratic (Q), spherical (S), CRPS (C),

and FTMS (F) for estimating weights in Section 4. For a given predictive density p(yT+1|YT ,Mk)

and realization of yT+1 = y∗, these scoring rules will allot a score as

L(y∗) = log(p(y∗|YT ,Mk))

Q(y∗) = 2p(y∗|YT ,Mk)−
∫ ∞

−∞
p(yT+1|YT ,Mk)

2dyT+1

S(y∗) =
p(y∗|YT ,Mk)

(
∫∞
−∞ p(yT+1|YT ,Mk)2dyT+1)0.5

(2.3)

C(y∗) =

∫ y∗

−∞
F (yT+1|YT ,Mk)

2dyT+1 +

∫ ∞

y∗
(F (yT+1|YT ,Mk)− 1)2dyT+1

F (y∗) = −
(y∗ − µi

σi

)2

− log(σ2
i ),

where µi is the mean, σi is the standard deviation and F (yT+1|YT ,Mk) is the cumulative predictive

density for Mk. An issue with the CRPS rule is that the optimization becomes computationally

heavier as the number of predictive densities increases due to the presence of integration (Gneiting
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and Raftery (2007)). Dawid and Sebastiani (1999) suggested four proper scoring rules based on

the first two moments of the predictive distribution, and F (y∗) is chosen to be the most popular

one in this paper. Given YT is realized, the weights for the opinion pools are estimated as

w∗
T = arg max

wT

T∑
t=1

S
( K∑

k=1

wk,Tp(yt|Yt−1,Mk)
)
, (2.4)

where w∗
T = {w∗

1T , w
∗
2T , . . . , w

∗
KT}. The opinion pool for yT+1 will take the form

p(yT+1|YT ) =
K∑
k=1

w∗
k,T p(yT+1|YT ,Mk). (2.5)

3 Bayesian Opinion Pool

The paper attempts to estimate opinion pools using the proper Bayesian formulation and obtain

the posterior distribution of weights. The weights are treated as a K-dimensional, simplex bound,

random variable endowed with a Dirichlet prior.

p(wt) ∼ Dir(α1, α2, . . . , αK), (3.1)

where the hyperparameter αk determines the relative weight given to Mk ∀ k = 1, 2, . . . , K,

thus allowing the incorporation of prior information for any forecaster. One of the important

properties of the Dirichlet Prior is its adaptability to applications related to model selection and

model averaging. If the value of αk is kept above 1 for all k, the prior penalizes allotting extreme

weights to some models; thus, the posterior mean of weights tend to be closer to each other. As

αk tends towards infinity for all k, the posterior mean of weights tends towards equal weights. If

the value of αk is kept below 1 for all k, the prior incentivizes extreme weights for some models.

As αk tends towards 0, the posterior weights tend towards choosing the best model among the set.

This is useful in case the application requires model selection. If αk = 1 for all k, then the prior

becomes uniform and lets the data steer the posterior mean of weights towards optimized values.
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Figure 1: Draws from 3-dimensional Dirichlet with different α

To illustrate, Figure 1 shows 4 different cases of draws from 3-dimensional Dirichlet distribution

for different values of α = {α1, . . . , αk}. The top-left figure represents the uniform prior with

α = {1, 1, 1} which also shrinks weights towards equality since the mean of weights is 1/3. The

top-right figure represents a stronger shrinkage of weights towards 1/3 since α = {5, 5, 5} which

can be useful for model averaging. The bottom-left figure represents the shrinkage of weights

towards boundary cases since α = {0.2, 0.2, 0.2} which can be useful for model selection. The

bottom right figure represents the case when non-sample information is available about the experts

and all experts are not preferred equally.

Given that the opinion pool itself is an appropriate density function, it makes sense to treat it

as the joint conditional distribution (equivalent to the joint likelihood function), a sequence of one-

step-ahead conditional distributions, each of them a mixture generated by these weights, which is

given as

p(YT |wT ) =
T∏
t=1

(
p(yt|Yt−1)

)
=

T∏
t=1

( K∑
k=1

wk,T p(yt|Yt−1,Mk)
)
. (3.2)
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Given the prior and the conditional distribution, the posterior distribution of the weights will

look like

p(wT |YT ) ∝ p(YT |wT )p(wT )

∝
T∏
t=1

( K∑
k=1

wk,T p(yt|Yt−1,Mk)
) K∏

k=1

wαk−1
k,T . (3.3)

It is easy to see that the log score optimization function (optimal prediction pools by Geweke and

Amisano (2011)) is a monotonic transformation of the conditional distribution.

log
( T∏

t=1

( K∑
k=1

wk,T p(πt|π1:t−1)
))

=
T∑
t=1

log
( K∑

k=1

wk,T p(πt|π1:t−1)
)

Therefore, the mean of the posterior distribution of weights will coincide with the optimal pre-

diction pool asymptotically. Gneiting and Raftery (2007) showed that the log score minimizes the

Kullback–Leibler divergence from DGP to the prediction model. This means the weights under the

BOP minimize the Kullback–Leibler divergence distance from DGP to the model since the prior

disappears in a large sample (Proof in the Appendix). In small sample settings, the estimates of

BOP will differ from the optimal prediction pool as the BOP weights will shrink towards the prior.

Since, under micronumerosity, it is not feasible to optimize the function, the BOP with a uniform

prior can be seen as an extension of the optimal prediction pool, broadening its applicability.

To illustrate how the prior distribution interacts with the conditional distribution, Figure 3

showcases how uniform prior and boundary prior (α < 1) shrink weights. The uniform prior

expands the set of feasible vectors of weights to cases where all models are relatively equally con-

sidered. Increasing the value of α will increase the strength of shrinkage and thus be useful in

applications requiring all models to participate in the final analysis (model averaging). The bound-

ary prior shrinks weights towards the best model which can be useful for applications related to

model selection.
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Prior Density + Conditional Density = Posterior Density

Prior Density + Conditional Density = Posterior Density

Figure 3: Illustration of weight’s shrinkage under Bayesian opinion pool

Since the final form of the posterior is non-standard, the paper uses the Metropolis-Hasting

(MH) algorithm to draw from the posterior density. For the proposal density, one potential candi-

date can be the Dirichlet distribution centred at the previous draw. Let w(g)
T be wT drawn in the

gth iteration. The Markov Chain Monte Carlo (MCMC) estimation of the BOP for the Dirichlet

proposal is summarized in the following steps.

STEP 1. Choose a value of wT = w
(0)
T .

STEP 2. At the gth iteration, sample w
(g)
T ∼ Dir(α(g−1)) where α(g−1) is chosen to center the

distribution at w(g−1)
T .

STEP 3. Generate u ∼ U(0, 1).

STEP 4. If u ≤ min
(

p(w
(g)
T |YT )Dir(w

(g−1)
T |w(g)

T )

p(w
(g−1)
T |YT )Dir(w

(g)
T |w(g−1)

T )

)
, return w

(g)
T , else return w

(g−1)
T . Go to step 2

and continue until the desired number of iterations is obtained.

Since there is no obvious choice for α(g−1) in step 2, the researcher can choose α(g−1) = cw
(g−1)
T ,

where c is chosen to make the mean of α(g−1) equal to 1. For the Dirichlet proposal, the acceptance
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rate may be too low if the posterior density is narrow or the dimension is high. Alternatively, the

vector of weights can be transformed to be defined on an unbounded domain using a multivariate

logit transformation. Given θT = {θ1,T , . . . , θK−1,T}, the transformation will look like

θk,T = ln(
wk,T

wK,T

) (3.4)

for all k = 1, . . . , K − 1, where θT ∼ N(θ̄T , Ω̄T ). The mean of the Gaussian proposal, θ̄T is kept

as some optimized value, which is calculated using an imperfect back-fitting MCMC algorithm

(details can be found in the Appendix) since the numerical optimization of the conditional distri-

bution fails in the case of micronumerosity. The covariance matrix, Ω̄T can be kept equal to either

σIK−1 where σ is decided based on the rejection rate or proportional to the inverse Hessian of the

conditional distribution at θ̄T . Let θ(g)T be θT drawn in the gth iteration. The MCMC estimation of

the BOP for the transformed proposal is summarized in the following steps.

STEP 1. Choose a value of θT = θ
(0)
T

STEP 2. At the gth iteration, sample θ
(g)
T ∼ N(θ̄T , Ω̄T ).

STEP 3. Transform θ
(g)
T to obtain w

(g)
T .

STEP 4. Generate u ∼ U(0, 1).

STEP 5. If u ≤ min
(

p(w
(g)
T |YT )q(w

(g−1)
T )

p(w
(g−1)
T |YT )q(w

(g)
T )

)
, return w

(g)
T , else return w

(g−1)
T . Go to step 1 and

continue until the desired number of iterations is obtained.

The density q(·) is the transformed density for wT obtained after incorporating the Jacobian of the

transformation. The mean of the Gaussian proposal, θ̄T , can also be kept as the previous draw (just

like in the case of the Dirichlet proposal). In that case, a starting value of θT = θ
(0)
T would be

required.

The framework is not restrictive to one-step-ahead densities and can be extended for long hori-

zons. For a given predictive density p(yt+h|Yt,Mk) representing h step ahead forecast, the posterior
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distribution of the weights will look like

p(wh
T |YT ) ∝

T−h∏
t=1

( K∑
k=1

wh
k,T p(yt+h|Yt,Mk)

) K∏
k=1

(wh
k,T )

αk−1. (3.5)

where wh
T represents weights optimized using information upto time T and used for predictions in

period T + h.

4 Simulation Study

This section explores the predictive performance of BOP and TOP on simulated data. The DGP

and individual models are considered under the linear setting to preserve useful insights that might

get lost in a complicated analysis. The data is artificially generated for a dependent variable as

DGP : yt = 0.5 + 0.5yt−1 + ϵt , where ϵt
iid∼ N(0, 5) (4.1)

Three experts submit their forecasts for yt as N(ŷkt, 4), where E(ŷkt) = yt for k = 1, 2 and 3.

Therefore, the expert’s predictions are unbiased and only differ in the variance as follows

Case 1 Case 2

Expert 1 var(π̂1t) = 4 var(π̂1t) = AR(1)

Expert 2 var(π̂2t) = 8 var(π̂2t) = AR(1)

Expert 3 var(π̂3t) = 16 var(π̂3t) = AR(1)

Case 1 tests the situation where there exists a clear ranking in accuracy for the expert’s predic-

tions. Expert 1 is the most accurate whereas expert 3 is the least. This scenario tests the ability

of BOP and TOP to identify the best model as the training sample increases. Case 2 models the

variance of the predictions to follow an autoregressive process with varying degrees of persistence.

This scenario introduces persistence to the accuracy of an expert’s prediction while allowing the
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ranking of experts to change over time. Thus, one expert can predict accurately for some periods

and inaccurately for others. This tests the ability of BOP and TOP to identify the combination of

weights which optimizes forecasting accuracy while ensuring against bad predictions due to the

reliance on any one of the experts.

The opinion pools are trained using the following sample sizes: T ∈ {5, 10, 20, 30, 50, 100} for

case 1 and T = {30, 100, 200} for case 2. Case 2 is tested with a larger T allowing for rankings to

change over time. The testing sample is kept at 30 observations and tested for short-term (one step

ahead), medium-term (three steps ahead), and long-term (six steps ahead) forecasting horizons (h).

The persistence levels of 0.2, 0.5 and 0.8 are used to test the sensitivity of results in case 2. The

predictive exercise uses the rolling window approach with the window length equivalent to the size

of T . The BOP is estimated using the Dirichlet proposal density with varying values of αk.

4.1 Volatility of Weights under Small Sample Setting

The paper considers case 1 to study the behaviour of weights since a clear ranking of models

is defined. This exercise finds that the weights under TOP have high volatility when T is small

(near micronumerosity). This can be seen in Figure 4 which shows the weight evolution for TOP

and BOP for T = 5, 10 and 30. Each row represents different types of opinion pools whereas

each column represents the sample size. For T = 5 and 10, the weights for TOP have a high

variance, especially for log, quadratic and spherical opinion pools where they oscillate as extremely

as between 0 and 1. This indicates that TOP is relying on the immediate predictive accuracy of

the expert since there is a lack of data regarding their consistency. On the other hand, BOP is

much more stable, stays close to the prior and is able to identify the best model while not overly

relying on it for prediction. This is due to the Dirichlet prior with αk = 1 which imposes sufficient

shrinkage (since it is the case of near micronumerosity) on weights. With the data flowing in,

the weights deviate from equal weights as enough evidence is present about the accuracy of the

concerned model. For T = 30, almost all the opinion pools are able to identify the best model and

allot weights according to the ranking of the models.
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Figure 4: Weights evolution for opinion pools

Table 1 contains the summary of the standard deviation for weights for TOP and BOP. The stan-

dard deviation is estimated by first calculating the standard deviations of the weight corresponding

to the individual models over the testing period and then taking the mean of those standard devi-
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ations (three models). The BOP has the lowest standard deviation for small samples (T = 5 and

10) because the prior stabilizes the weights around equality. As the sample size increases (T = 20

and 30), the weights for TOP become stable as well and start to converge towards the best model.

This is intuitive since the opinion pools are able to identify the true DGP when T is high.

Table 1: Standard deviation of weights

Sample Log Quad Sphere CRPS FTMS Bayes

5 0.241 0.306 0.412 0.125 0.075 0.040

10 0.179 0.170 0.331 0.093 0.059 0.045

20 0.088 0.069 0.172 0.038 0.024 0.038

30 0.054 0.048 0.086 0.027 0.018 0.029

The Dirichlet prior stabilizes the evolution of weights over time; leading to BOP having the

lowest volatility under the small sample setting. The stability over time allows the opinion pool

to avoid overfitting, which is one of the crucial features of a good predictive model. This positive

spillover affects the predictive performance which is discussed in Subsection 4.3.

4.2 Shrinkage of Weights

The paper considers case 1 to study weight’s behaviour under shrinkage since a clear ranking

of models is defined. Since the Dirichlet prior allows the researcher to choose the intensity of

shrinkage, it is important to see how the weight’s behaviour changes as αk changes. Figure 5

shows the evolution of weights when αk = 1, 3 and 5. for T = 10, 30 and 50. It is observed that

the weights converge towards equality as αk is increased which is an expected result. This property

allows BOP to be used in applications related to model averaging. As αk tends to infinity, BOP

tends towards the simple opinion pool (opinion pool with equal weights).

Figure 6 shows the evolution of weights when αk = 1, 0.6 and 0.3. for T = 10, 30 and 50. It

is observed that the weights diverge away from equal weights and the best model is been preferred
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Figure 5: Bayesian Opinion Pool with α > 1 for Model Averaging
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Figure 6: Bayesian Opinion Pool with α < 1 for Model Selection

among the available ones. As αk tends to 0, BOP degenerates into the best model thus preferred

for applications related to model selection.

4.3 Forecasting Performance

The paper uses MSPE to evaluate the predictive performance of various opinion pools. Table 2

contains MSPE values for case 1 for different sample sizes and forecasting horizons. The columns

with the lowest MSPE are highlighted. BOP has the lowest MSPE for most of the scenarios. One

can observe that as the sample size increases, the optimal αk also increases. Since the conditional

density dominates the prior when T is high, a stronger prior leads to optimal shrinkage. Among
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Table 2: Mean Square Prediction Error for Case 1

Sample (T ) Horizon (h) Log Quad Sphere CRPS FTMS
αk = 1

Bayes
αk = 2 αk = 3

5 1 144 212 200 81.5 75.7 74 76.1 77.4
5 3 152 176 168 78.8 72.4 70.5 71.8 72.8
5 6 153 147 160 68.6 62.5 62.9 64.6 65.4

10 1 133 157 157 88.7 88.6 86.9 89.5 91.7
10 3 129 152 160 79.8 80.5 79.1 82.7 84.6
10 6 127 132 158 79.9 77.1 73.5 76.0 77.5
20 1 124 130 126 70.5 72.6 68.1 70.0 72.4
20 3 111 124 119 64.5 67.1 62.5 64.7 66.9
20 6 93.2 114 99.3 56.9 59.2 55.2 57.3 59.4
30 1 112 131 88.2 70.7 74.8 67.4 69.1 72.0
30 3 106 127 83.0 65.5 70 62.8 64.2 67.6
30 6 90.0 115.4 75.3 59.2 63.3 56.3 58.4 61.4
50 1 124 144.6 105 76.9 83.8 82.5 76.1 76.9
50 3 114 135 97.6 71.3 78.2 76.4 71.0 71.6
50 6 109 126 92.1 67.3 73.2 72.4 67.1 67.8

100 1 115 124 77.6 68.3 73.6 78.3 68.4 65.4
100 3 106 114 70.1 61 66.2 70.7 61.0 58.1
100 6 98.0 106 63.7 56.2 61.2 64.3 56.1 54.1

the TOP, CRPS and FTMS perform well and their MSPE is significantly lower than log, quadratic

and spherical. For FTMS, since the predictions of experts vary only through mean and variance in

the DGP (normal distribution is imposed), the first two moments incorporate sufficient information

for opinion pools. For CRPS, it captures the idea of proximity better than other scoring rules and

thus performs well in this simulation exercise.

Table 3 contains MSPE values for case 2 for different sample sizes, forecasting horizons and

persistence. The results are similar to that of Table 2 where BOP dominates for the majority of

cases. CRPS and FTMS perform significantly better than log, quadratic and spherical scoring

rules. This shows that BOP is able to capture the dynamic behaviour of experts when the ranking

based on predictive accuracy changes over time.
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Table 3: Mean Square Prediction Error for Case 2

Persistence Sample
Size

Forecasting
Horizon

Log Quad Sphere CRPS FTMS Bayes
αk = 1

0.2 30 1 14.30 6.84 10.24 5.26 5.25 5.22
0.2 30 3 13.22 6.14 8.88 4.60 4.61 4.62
0.2 30 6 11.29 5.83 8.31 4.18 4.18 4.18
0.2 100 1 12.64 4.75 6.45 4.12 4.13 4.16
0.2 100 3 10.84 4.36 5.64 3.74 3.75 3.72
0.2 100 6 9.32 4.05 4.95 3.47 3.48 3.45
0.2 200 1 10.82 5.98 6.42 5.63 5.64 5.61
0.2 200 3 10.28 5.13 5.55 4.91 4.92 4.91
0.2 200 6 7.99 4.61 4.78 4.34 4.35 4.27
0.5 30 1 15.41 7.87 10.81 5.54 5.55 5.51
0.5 30 3 12.97 7.061 9.39 4.91 4.92 4.91
0.5 30 6 12.84 6.70 8.54 4.45 4.45 4.43
0.5 100 1 12.52 5.17 7.03 4.45 4.47 4.46
0.5 100 3 11.22 4.74 6.25 4.00 4.03 3.96
0.5 100 6 9.61 4.37 5.48 3.72 3.74 3.68
0.5 200 1 12.41 6.90 7.25 6.33 6.35 6.24
0.5 200 3 11.28 5.97 6.37 5.59 5.60 5.53
0.5 200 6 8.88 5.41 5.55 5.00 5.02 4.87
0.8 30 1 18.27 10.62 13.77 7.03 7.10 6.98
0.8 30 3 18.97 9.70 14.27 6.47 6.50 6.45
0.8 30 6 19.40 8.82 13.28 6.00 5.99 5.94
0.8 100 1 15.57 6.59 9.17 5.76 5.80 5.75
0.8 100 3 14.51 6.17 9.02 5.38 5.42 5.34
0.8 100 6 14.00 5.69 8.01 4.97 5.00 4.94
0.8 200 1 18.22 9.79 10.42 8.77 8.81 8.61
0.8 200 3 16.74 8.45 9.21 7.74 7.77 7.69
0.8 200 6 13.73 7.69 8.18 7.01 7.05 6.86
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5 Application: Inflation Prediction using the Survey of Profes-

sional Forecaster

The Survey of Professional Forecasters is a useful source of data for economists and policymakers.

Croushore and Stark (2019) in ”The Fifty Years of the Survey of Professional Forecasters” stated,

”In 2018, the survey generated more than 45,000 unique hits to the Philadelphia Fed’s external

webpages...The audience consists of academic researchers..., policymakers...and business people”.

Figure 7 shows the increase in citations and publications of papers per year which contain ”Survey

of Professional Forecasters” in their title, abstract or keywords.

Figure 7

The Federal Reserve Bank of Philadelphia publishes individual and aggregate density projec-

tions (and point estimates) for macroeconomic variables every quarter. They survey individual

professional forecasters immediately after the U.S. Bureau of Economic Analysis (BEA) releases

data. A unique ID is assigned to each forecaster, making tracking them possible. Anonymity is

maintained to prevent strategic misreporting. The experts submit their forecast densities by allot-

ting probabilities to bins (range of inflation rates) which are predetermined by the Fed so that the

final density takes the form of a histogram. The details of the data set and its significance can be
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found in Croushore et al. (2019), Clements et al. (2023) or on their website. This paper focuses

on inflation density forecasts. (Diebold et al. (1997)) argued that point forecasts from SPF are

extensively used in macroeconomic literature, but density forecasts are relatively less explored.

SPF is used practically for two purposes. First, it is an estimator for inflation expectations and

thus is used to track them. Keane and Runkle (1990) argue that a model with rational agents can

be better represented using the predictive data from SPF. Professional forecasters should be better

informed and thus justify the assumption of rationality in macro models. Carroll (2003) evaluated

the influence of SPF data on private-sector expectations. Second, SPF is used to forecast inflation

accurately or test forecasting models thus, facilitating decisions requiring accurate inflation pre-

dictions. Smets et al. (2014) incorporated SPF data to measure the forecasting accuracy of New

Keynesian DSGE models.

The Federal Bank of Philadelphia publishes aggregated inflation forecasts density calculated

by taking a simple average of density estimates submitted by individual experts. Equal weights are

a reasonable choice if the objective is to track inflation expectations. Since, the aim is to capture

how rational agents perceive future inflation, including everyone’s opinion captures the idea of

inflation expectations. Also, numerical optimization is infeasible as 160 forecasters participated

during 120 quarters (Q1 1992 to Q4 2021), with an average of 35 active forecasters per quarter.

The number of forecasters is always higher than the number of data points for any rolling window.

If the objective of SPF is inflation forecasting, then equal weights are a sub-optimal choice.

Aastveit et al. (2018) mentioned that ”Despite the long history of the SPF, little attention has

historically been paid to how the weights on the competing forecast densities in the finite mixture

should be determined”. The issue with the simple opinion pools (SOP) approach is that it leads to

the loss of past predictive performance information and produces an inefficient estimator. Figure 8

presents the predictive performance of experts who are active for at least 10 quarters in the period

of Q1 1992 to Q4 2021. The vertical axis represents the probability allotted by an expert to the

bin which contained the realized value of the inflation rate. Thus, higher the probability allotted

by the expert, better is the forecast. The horizontal axis represents the unique ID of experts. The
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Figure 8

size of the points represents the number of quarters, an expert was active in the past. The figure

clearly depicts that there are some experts who were consistently active and allotted much higher

probability to the realized inflation rate than the average and vice versa. Using equal weights

ignores this information and thus there is an opportunity to improve the predictive accuracy of

aggregated inflation forecast density.

This paper aggregates inflation density forecasts using the BOP with a uniform prior (αk =

1). BOP not only accounts for important information related to the past accuracy of individual

forecasters but also allows estimation under micronumerosity where optimization-based methods

fail. The decision to choose a uniform prior is guided by the non-sampling information. Since the

Fed uses equal weights to aggregate densities, it can be considered a good benchmark to start from.

Also, researchers in the past have frequently found combining point forecasts with equal weights

to be very competitive with the more complicated weighting techniques. Clemen (1989) shows in

his review that equal weights are difficult to beat. Similar results were concluded by Stock and

Watson (1999) and Fildes and Ord (2002). The paper also considers tight priors of αk = 1.5 and

3. The prior shrinks the BOP towards SOP but still allows some movement in case strong evidence
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for better relative predictive accuracy is present.

Frequent entry and exit of forecasters make optimization of the opinion pool more involved.

Capistrán and Timmermann (2009) elaborated on the problem of having an unbalanced panel and

recommended filling in the missing values before aggregation. They also considered using the

unbalanced panel by keeping only the frequent forecasters. However, they had to resort to the

simple average when there were fewer remaining forecasters than parameters to be estimated.

This paper does not fill in for the missing forecasting density and follows the following method.

• Entry: Suppose a forecaster is unavailable in the training data (m quarters moving window)

but submits the prediction for the (m + 1)th quarter. Thus, there is no information on the

past predictive performance. In that case, their density is allotted 1/A weight (equal weight),

where A is the number of active forecasters in the (m + 1)th quarter (Alternatively, the

researcher can decide to include the expert only if they have participated for a certain number

of quarters).

• Exit: Suppose a forecaster was available in the training data (m-quarter moving window) but

not for the (m + 1)th quarter. In that case, their density will be allotted 0 weight, and they

will not be considered in the optimization process.

To explain it better, let us assume that 40 forecasters were active in the last 20 quarters (not

necessarily for every quarter), which is the training period for this case. Only 10 forecasters sub-

mitted their predictions for the 21st quarter, including 2 new ones. Then, the weights allotted to

these 2 new ones would be 1/10 each, and the weights for the remaining 8, whose values were

estimated based on the past data (excluding the twelve inactive forecasters), would be normalized

so that the total sum of these active 10 weights is 1.

The application considers moving windows approach with varying lengths from 21 to 29 quar-

ters of training data and the rest of the period until 2021 Q4 as testing data. The prior with αk > 1

tends to bring weights closer 1
K

where K is the total number of active experts.
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Figure 9: Simple and Bayesian opinion pool densities for Q1 2014

To visually aid the understanding of the information aggregation process under the BOP (uni-

form prior) and SOP, Figure 9 demonstrates BOP and SOP final predictive densities for inflation

for Q1 2014. A total of 40 forecasters submitted their predictions. The final densities look different

representing the fact that BOP allotted different weights to each expert than SOP. In this particular

case, BOP allots a higher probability to the realized inflation than SOP

Figure 10: Weights allotted to experts under BOP and SOP for Q1 2014

Figure 10 shows estimated weights under BOP for different values of αk for Q1 2014. It shows

how the weights become concentrated around equal weights when αk increases, showcasing the

strong shrinkage implied.

The aggregated predictive densities, representing out-of-sample forecasts, are tested based on

25



Figure 11: Average Density Evaluated at the Realized Inflation Rate for Opinion Pools

the average density allotted to the realized inflation rate. Figure 11 shows the average density

difference between SOP and BOP evaluated at the realized inflation rate for different rolling win-

dows. The difference is normalized to 0 and thus the vertical red line at the origin is represented

by SOP. As the training window varies, the predictive accuracy of opinion pools is tested on the

corresponding remaining quarters of data until Q4 2021, and the weights are updated each quar-

ter (recursive). The average density allotted by the BOP is always higher than the SOP. As αk

increases, the MSPE difference between SOP and BOP becomes smaller representing that BOP

is tending towards SOP. The difference is significant at 5% for the uniform prior for all training

window lengths considered.

Table 4: MSPE associated with opinion pools for different training windows

21 22 23 24 25 26 27 28 29

BOP 0.433 0.440 0.445 0.453 0.451 0.457 0.462 0.467 0.468

SOP 0.449 0.454 0.459 0.463 0.467 0.471 0.476 0.482 0.488

Diff -0.016*** -0.014** -0.014** -0.01* -0.016*** -0.014*** -0.014** -0.015*** -0.02***

Significance: 0.1 (*), 0.05 (**) and 0.01 (***)
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Figure 12: MSPE associated with opinion pools for different training windows

To test whether the improvement in the density forecast estimator spills over to the estimates

of point forecasts, opinion pools are compared using MSPE. Table 4 presents MSPE for BOP with

a uniform prior (αk = 1) and SOP. The MSPE for BOP is smaller than SOP for every length

of training window considered. The difference in MSPE between BOP and SOP is significant.

Figure 12 shows the MSPE difference between BOP and SOP for different training windows. The

difference is normalized to 0. The figure also shows the MSPE difference for BOP with tight

priors (αk = 1.5 and 3) which is smaller. This shows that the complete information incorporated

in estimating the forecast density has a positive spillover effect on the estimate of the point forecast.

It also suggests that all forecasters are not equal in their predicting abilities, and the BOP exploits

this asymmetry to its advantage.

6 Conclusion

This paper identifies two limitations associated with traditional opinion pools. First, optimizing

opinion pools using a scoring function is not feasible if the number of models exceeds the data

length, an issue faced in macroeconomics applications. Second, high volatility in weight associated
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with TOP affects the predictive accuracy due to overfitting. Thus, a lot of researchers resort to

equal weights since the marginal gains from optimized weights do not justify the cost of involving

oneself in a complicated procedure.

This paper proposes estimating opinion pools under the Bayesian framework to resolve these

issues. The Bayesian formulation allows the weights to be estimated under micronumerosity. The

MCMC algorithm enables sampling of the high dimensional weight vector from its joint posterior

distribution leading to efficiency gains. The use of a Dirichlet prior makes the weights relatively

more stable over time and allows the researcher to control the shrinkage level. Apart from solving

the issues, the BOP is found to be highly competitive compared to TOP, when micronumerosity is

not the case.

In the application, the paper uses SPF data to obtain better estimates of inflation forecasts

using the BOP. The Federal Bank of Philadelphia estimates the aggregate inflation density by

allotting equal weights to all the individual densities. The BOP uses optimized weights based on

the past accuracy of the forecaster, thus utilizing richer information and discouraging forecasters

from providing extreme predictions. The application showed that the BOP (with various levels of

shrinkage) outperforms the SOP published by the Federal Bank of Philadelphia.

The applications of BOP extend to macroeconomics or finance, especially in settings which

deal with aggregating predictive densities. Gneiting and Ranjan (2013) combined predictive cu-

mulative distributions and tested the approach on forecasting S&P 500 returns. McAlinn et al.

(2020) used the Bayesian predictive synthesis for applications related to macroeconomic forecast-

ing. Del Negro et al. (2016) estimated time-varying weights in linear opinion pools (Dynamic

Pools) and used them to investigate the relative forecasting performance of dynamic stochastic

general equilibrium (DSGE) models with and without financial frictions for output growth and

inflation. Baştürk et al. (2019) combined density forecasts to improve portfolio strategies.

Given that the BOP can be applied to settings involving micronumerosity, where TOP can not

be estimated, and its predictive accuracy is highly competitive with TOP when micronumerosity

is not an issue, a stronger case can be made for its exploration and adoption in future research.
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While the discussion in the paper focused on macroeconomic time series data, the usefulness

of the techniques can be extended to any application involving model averaging and prediction.

The utility of the BOP in other simulation settings, improvements in the MCMC algorithm and

estimation of optimal shrinkage can be explored in future research work.
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Appendix A: Back-fitting MCMC algorithm

This subsection presents the MCMC algorithm used in the MCMC estimation of BOP. There is

a possibility that w̄T obtained is not the global maximum. Let wo be the weight vector drawn in
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the previous iteration and wn be the weight vector drawn in the current iteration. The steps are as

follows.

STEP 1. Draw wn from a proposal density, be it Dirichlet, Normal distribution with logistic

transformation (discussed in Section 3) or truncated normal (defined on the interval [0, 1]),

where the proposal is centred at wo. Normalize wn so that the sum is 1 in case needed, and

choose the variance so that the whole space can be explored.

STEP 2. Generate u2 ∼ uniform(0, 1)

STEP 3. If u2 ≤ min
(

L(YT |wn)
L(YT |wo)

, 1
)

, return wn, else return wo and store the value of con-

ditional distribution evaluated at wo. Since uniform Dirichlet distribution is considered as

prior, it disappears from the formula.

STEP 4. Repeat the above three steps M times (call it iteration cycle 1) and name the weights

as w∗
0 with the highest conditional distribution value.

STEP 5. Repeat the above 4 steps N times (call it iteration cycle 2) with w0 = w∗
0 in each

iteration. Stop once the value of conditional distribution has converged and use w∗
0 stored in

the N th iteration as w̄T .

The value N in iteration cycle 2 can be decided based on how much the maximum conditional

distribution value changes after every M iteration in iteration cycle 1. Similarly, the number of

iterations M in iteration cycle 1 is decided based on the trade-off between exploring the solution

space and computational time.

Appendix B: Asymptotic Properties

Under the M-closed case, when the true model (let’s say D) is part of the set of available models,

the opinion pool degenerates to the true model since all the weight is allotted to it (Geweke and
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Amisano (2011)). This situation rarely arrives in real life, and D is generally unknown to the fore-

caster and the decision maker. The weights become relevant under the M-Open case when D is not

part of the set of available models. In that case, the true weights (let’s say w0 = {w0
1, w

0
2, . . . , w

0
K})

can be interpreted as the ones which give the minimum Kullback-Leibler divergence from D to the

opinion pool. Hall and Mitchell (2007) showed that the opinion pool optimized based on log pre-

dictive score minimizes the Kullback–Leibler directed distance from the data generating process

to the prediction model. For K prediction models, the log prediction score for an opinion pool for

wT = {w1,T , w2,T , . . . , wK,T} where wk,T ≥ 0 ∀ k = 1, 2, . . . , K and
∑K

k=1wk,T = 1 for a given

period t will look like

l(wT |YT ) =
T∑
t=1

log
( K∑

k=1

wk,T p(yt|Yt−1,Mk)
)

=
T∑
t=1

l(wT |Yt) (B.1)

One of the advantages of the log prediction score is that it is closely related to the likelihood

function, which can be seen in the relation l(wT |YT ) = log(p(YT |wT )). Geweke and Amisano

(2011) showed that the weights obtained from optimizing l(wT |YT ) asymptotically minimizes the

Kullback-Leibler distance from the true model D.

w∗
T = arg maxw l(wT |YT )

a.s.→ arg maxw l(w|Y ) = w0 (B.2)

where, 1
T

∑T
t=1 l(wT |Yt) = l̄(wT |YT )

a.s.→ l(w|Y ). Using this result, the posterior distribution of

weights can be rewritten as

p(wT |YT ) ∝ p(YT |wT )p(wT )

∝ exp{log(p(YT |wT ))}p(wT )

∝ exp{
T∑
t=1

l(wT |Yt)}p(wT )

∝ exp{T l̄(wT |YT )}p(wT ) (B.3)
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As T increases, the exponential term dominates, and the effect of the prior, which does not depend

on T , becomes relatively smaller. To analyse the posterior distribution further, let’s take a second-

order Taylor series approximation of l(wT |YT ) around w∗
T

l(wT |YT ) ≈ l(w∗
T |YT )−

T

2
(wT − w∗

T )
2(−l̄′′(w∗

T |YT ))

≈ l(w∗
T |YT )−

T

2v
(wT − w∗

T )
2 (B.4)

where l̄′′(w∗
T |YT ) =

1
T

∑T
t=1 l

′′(w∗
T |Yt) and v = [l̄′′(w∗

T |YT )]
−1. The term with first-order derivative

disappears as l(wT |YT ) is maximized at wT = w∗
T . The posterior distribution can be approximated

as

p(wT |YT ) ∝ exp{− T

2v
(wT − w∗

T )
2}p(wT ) (B.5)

The first term is in the form of a normal distribution with mean w∗
T and variance v

T
. In summary,

the role of the prior distribution becomes relatively small in determining the posterior distribution

when T is large. The posterior distribution converges to a degenerate distribution at w0 as T −→ ∞

then v
T
−→ 0 and w∗

T −→ w0, and the posterior distribution is approximately normally distributed

with mean w∗
T .
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